Nitrogen Fertilizer Management to Mitigate N₂O Emissions in Alberta

Len Kryzanowski, P.Ag
Section Lead, Land Use Section
Alberta Agriculture and Rural Development
Acknowledgements

Field and Lab Technical Support

L. Michelsen, P. Reid, J. Zuidof, G. Semech

Funding

Alberta Crop Industry Development Fund (ACIDF)
The Nitrogen Cycle

Atmospheric Nitrogen Fixation

Animal Manures and Biosolids

Biological Fixation By Legume Plants

Organic and Microbial Nitrogen

Ammonium NH_4^+

Nitrate NO_3^-

Crop Harvest

Volatilization NH_3

Industrial Fixation (Commercial Fertilizers)

Crop Harvest

Plant Residues

Plant Uptake

Ammonium NH_4^+

Nitrate NO_3^-

Leaching

Denitrification

Runoff and Erosion

Input

Loss

Component

Adapted from IPNI
Nitrogen Losses

- N-Cycle is open ended with many pathways for inputs and losses; control is difficult
- Large amounts of surplus reactive N (NH₃, NH₄⁺, NOₓ, HNO₃, NO₃, N₂O and organic N forms)
- Volatilization, leaching, runoff, denitification

Source: Manitoba Agriculture, Food and Rural Initiatives
N$_2$O Concerns

- A significant greenhouse gas
 - GWP - 296 – 310 times greater than CO$_2$
 - Ozone depleting agent

- Indicator of inefficiencies in N recovery from soil and fertilizer.

- Limiting N$_2$O emissions from farming operations can be beneficial from both an environmental as well as an agronomic standpoint.

- IPCC established values to calculate direct N$_2$O emissions from fertilizer N use in various parts of the world - 1.25%.
Synchronizing Available N and Crop Uptake

- Low N recoveries by crops, i.e., low NUEs,
 - Quick nutrient release characteristics of common fertilizers
 - Nonresponsive to changes in soil water and temperature (factors regulating plant growth)
 - Not coinciding with crop growth peak demands

- The gradual release of ammonium from controlled release N fertilizers provides a slow stream of nitrogen for plant uptake, and minimize N losses.
Nitrogen Fertilizer Use

Fertilizer Nitrogen Sales for Alberta 1946 - 2005
Management Options to Improve Nitrogen Use Efficiency

- Crop selection
 - Legumes vs non-legumes

- Crop breeding
 - Improve NUE

- Fertilizer management
 - Implement N BMPs, “4R Nutrient Stewardship”
 - Timing, placement, rates and sources

- Use enhanced efficiency fertilizers (EEF) with improved characteristics:
 - Single application for the entire growing season
 - High percentage uptake into the target crop
 - Minimum detrimental effects on environment
ESN is a polymer-coated urea (PCU) fertilizer

Moisture and Temperature Controlled

Adapted from "Olson-Rutz et al., 2009. Enhanced Efficiency Fertilizers (EB0188), Montana State Univ. Extension" Schematic adapted from Agrium U.S., Inc. (Photos courtesy of Agrium U.S., Inc. All rights reserved.)
Collaborative 5 year study 2008-2012:

- AARD
 - ESD (Land Use)
 - RAID (Food & Bio-Industrial Crops)
- AAFC – Lacombe, Beaverlodge
- Agrium
- ACIDF
Project Objectives

- Evaluate agronomic performance of urea, ESN and blend, for crop growth, yield and quality, based on 4R nutrient management system “Right Product @ Right Rate, Right Time, Right Place™”
- Identify appropriate use of ESN, urea or blend (spring versus fall application, soil moisture conditions, agro-climatic regions and crop).
- Identify agronomic rate limits of ESN, urea and blend application to reduce seedling damage.
- Determine economic optimum rates, placement and timing of ESN, urea and blend application.
- Evaluate N fertilizer management to mitigate N₂O emissions
- Update provincial N fertilizer management recommendations and the AFFIRM software.
Study crop productivity, crop quality, maximum safe fertilizer rates, and N use efficiency:

- Compare effectiveness of N fertilizer sources - urea, ESN and blend (25% urea-75% ESN).
- Compare N fertilizer application time/placement - Fall Banded (FB), Spring Banded (SB), Spring Seed-Placed (SP) of urea and ESN - Spring Seed-Placed (SP) blend
- Crop response to increasing N fertilizer application rates (0, 30, 60, 90, 120 kg/ha).
- 3 Crops (HRS Wheat, 2R Barley and RR Canola)
Agronomic Research Locations

- 9 sites across Alberta
 - 8 dryland & 1 irrigated

- Range of agro-ecological regions with various soil types and climatic regimes

- Continuously cropped or stubble fields
- Determine N_2O emissions reduction from timing, rates and nitrogen fertilizer products (urea and ESN).

- 3 sites for N_2O monitoring
 - 2 dryland & 1 irrigated
 - Dark Gray Luvisol
 - Black Chernozem
 - Dark Brown Chernozem
Evaluate N fertilizer management options to mitigate N$_2$O emissions:

- Compare effectiveness of N fertilizer sources - urea, ESN.
- Compare N fertilizer application time - Fall Banded (FB), Spring Banded (SB),
- Compare N fertilizer application rates - 0, 60, 120 kg/ha
- 1 Crop - 2R Barley
Sampling Equipment & Protocol

- **Gas Sampling**
 - Plexiglas vented chambers (0.1 m² soil surface area and 10-L headspace volume); 20 ml syringes and # 20 needles; 10 ml evacuated exetainers (stored in a Cooler)
 - Sampling using a time step method - samples taken 15, 30 and 45 minutes after placing the cover on the chamber; ambient air samples are considered as samples at time 0

- **Lab Analysis**
 - Gas Chromatograph (Varian 3800 with ECD)

- **Sampling Schedule**
 - Fall to fall (October – October) – fall fertilizer application
 - Spring to spring (May – May) – spring fertilizer application

- **Sampling Frequency**
 - Weekly
 - High moisture events

- **Data Processing**
 - Excel spreadsheet calculator - Dr Richard Farrell (U of S)
 - Calculator tests both linear and quadratic models for fit of the time step concentration data.
Meteorological Summary

Total Growing Season (May-September) Precipitation/Irrigation (mm)

<table>
<thead>
<tr>
<th>Year</th>
<th>Dark Gray Luvisol</th>
<th>Black Chernozem</th>
<th>Irrigated Dark Brown Chernozem*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>220.4</td>
<td>297.2</td>
<td>524.8</td>
</tr>
<tr>
<td>2009</td>
<td>157.7</td>
<td>208.3</td>
<td>423.8</td>
</tr>
<tr>
<td>2010</td>
<td>293.1</td>
<td>457.6</td>
<td>456.2</td>
</tr>
<tr>
<td>2011</td>
<td>265.2</td>
<td>387.5</td>
<td>328.3</td>
</tr>
<tr>
<td>2012</td>
<td>257.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Precipitation + Irrigation
N$_2$O Monitoring Results
Irrigated Dark Brown, 2010
N₂O Monitoring Results
Dark Gray Luvisol, 2009

Fall Banded Treatments
- F-C-0
- F-E-120
- F-E-60
- F-U-120
- F-U-60

Spring Banded Treatments
- S-C-0
- S-E-120
- S-E-60
- S-U-120
- S-U-60

Chambers installed just after fall banding
No sampling over winter

Chambers installed just after spring banding and seeding

Cumulative N₂O Emissions (g N ha⁻¹)
N$_2$O Monitoring Results
Dark Gray Luvisol, 2010
Cumulative N$_2$O Emissions: Dark Gray Luvisol

- **Fall Urea**
 - Equation: $y = 0.0057x + 0.5102$
 - $R^2 = 0.98$
- **Fall ESN**
 - Equation: $y = 0.0047x + 0.5281$
 - $R^2 = 0.99$
- **Spring Urea**
 - Equation: $y = 0.0035x + 0.5092$
 - $R^2 = 0.93$
- **Spring ESN**
 - Equation: $y = 0.0033x + 0.5269$
 - $R^2 = 0.98$
Cumulative N_2O Emissions: Black Chernozem

Cumulative N_2O Emissions (kg ha$^{-1}$) vs. N Fertilizer Rate (kg ha$^{-1}$)

- **Fall Urea**
 - $y = 0.0074x + 0.7077$
 - $R^2 = 0.79$

- **Fall ESN**
 - $y = 0.005x + 0.8121$
 - $R^2 = 0.98$

- **Spring Urea**
 - $y = 0.0028x + 0.866$
 - $R^2 = 0.41$

- **Spring ESN**
 - $y = 0.0026x + 0.8504$
 - $R^2 = 0.44$
Cumulative N_2O Emissions: Irrigated Dark Brown Chernozem

- **Fall Urea**
 - Equation: $y = 0.0086x + 0.739$
 - $R^2 = 0.84$

- **Fall ESN**
 - Equation: $y = 0.0072x + 0.7158$
 - $R^2 = 0.72$

- **Spring Urea**
 - Equation: $y = 0.0047x + 0.7099$
 - $R^2 = 0.92$

- **Spring ESN**
 - Equation: $y = 0.0022x + 0.7497$
 - $R^2 = 0.99$
Fertilizer Induced Emission Factor $\text{EF}_{\text{annual}}$ (%)

<table>
<thead>
<tr>
<th>Appl'n Time</th>
<th>N Source</th>
<th>N Rate kg ha$^{-1}$</th>
<th>Dark Gray Luvisol</th>
<th>Black Chernozem</th>
<th>Irrigated Dark Brown Chernozem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ave</td>
<td>std err</td>
<td>ave</td>
</tr>
<tr>
<td>Fall</td>
<td>Urea</td>
<td>60</td>
<td>0.42</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>Fall</td>
<td>Urea</td>
<td>120</td>
<td>0.57</td>
<td>0.11</td>
<td>0.74</td>
</tr>
<tr>
<td>Fall</td>
<td>ESN</td>
<td>60</td>
<td>0.40</td>
<td>0.15</td>
<td>0.41</td>
</tr>
<tr>
<td>Fall</td>
<td>ESN</td>
<td>120</td>
<td>0.48</td>
<td>0.09</td>
<td>0.53</td>
</tr>
<tr>
<td>Spring</td>
<td>Urea</td>
<td>60</td>
<td>0.35</td>
<td>0.08</td>
<td>0.26</td>
</tr>
<tr>
<td>Spring</td>
<td>Urea</td>
<td>120</td>
<td>0.27</td>
<td>0.05</td>
<td>0.44</td>
</tr>
<tr>
<td>Spring</td>
<td>ESN</td>
<td>60</td>
<td>0.26</td>
<td>0.04</td>
<td>0.30</td>
</tr>
<tr>
<td>Spring</td>
<td>ESN</td>
<td>120</td>
<td>0.34</td>
<td>0.07</td>
<td>0.43</td>
</tr>
</tbody>
</table>
N₂O Emission Mitigation Summary

Impact of N fertilizer management change (%) on mitigation of N₂O emissions (2008 – 2012)

<table>
<thead>
<tr>
<th>Management Change</th>
<th>120 kg N ha⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ave</td>
</tr>
<tr>
<td>Fall Urea → Fall ESN</td>
<td>-6.1</td>
</tr>
<tr>
<td>Fall Urea → Spring Urea</td>
<td>-18.0</td>
</tr>
<tr>
<td>Fall Urea → Spring ESN</td>
<td>-24.9</td>
</tr>
<tr>
<td>Fall ESN → Spring ESN</td>
<td>-16.6</td>
</tr>
<tr>
<td>Spring Urea → Fall ESN</td>
<td>39.4</td>
</tr>
<tr>
<td>Spring Urea → Spring ESN</td>
<td>-4.9</td>
</tr>
</tbody>
</table>

Positive average values indicate increased emissions; Negative average values indicate reduced emissions.
Summary

- Measured emission factor coefficients much lower than the 1.25% IPCC coefficient.
- Emissions are episodic with high spatial (regional) and temporal variability closely related to spring thaw, precipitation and irrigation events.
- Spring application of nitrogen fertilizer was the most effective means of reducing total emissions.
- Switching from fall applied nitrogen fertilizer to spring application results in 17% to 25% N\textsubscript{2}O emission reduction.
- Switching from fall applied urea to fall applied ESN results in 6% reduction.
- Changing from spring applied urea to spring applied ESN would result in a 5% reduction.
High rates of N fertilizer caused more nitrous oxide emissions compared to the low N rates.

Reduction in emissions was greater for high N treatments compared to the low N.

In general, the ESN product resulted in lower emissions than uncoated urea.

ESN could provide higher N use efficiency than uncoated urea, under similar conditions.

If economically viable, producers could use ESN as a potential alternative to urea for improved crop production and reducing N_2O emissions.

Any disruption or reduction in crop N uptake during the growing season could result in higher emissions from the ESN or similar products.
Future Work

Current Data Set
- Soil mineral N
- Soil N mineralization from SOM
- Crop N uptake and NUE
- Yield response modeling
- AFFIRM update

Research Needs
- Fertilizer blends
- Split applications
- Variable rate
- Manure fertilizer blends
- Inhibitors
- Combining genetic, technological and management opportunities